Google Metrics

2023

34. A Low-Cost Fluorometer Applied to the Gulf of Saint Lawrence Rhodamine Tracer Experiment. K. Park, J. Creelman, A. Chua, T. Chambers, A. MacNeill, and V. Sieben, IEEE Sensors Journal, 2023, vol. 23(15), pp. 16772-16787.
Click to read, DOI: 10.1109/JSEN.2023.3283977

33. Compact and automated eDNA sampler for in situ monitoring of marine environments. A. Hendricks, C. Mackie, E. Luy, C. Sonnichsen, J. Smith, I. Grundke, M. Tavasoli, A. Furlong, R. Beiko, J. LaRoche, and V. Sieben, Scientific Reports, 2023, vol. 13, no. 5210, pp. 1-13.
Click to read, DOI: 10.1038/s41598-023-32310-3

32. An automated microfluidic analyzer for in situ monitoring of total alkalinity. C. Sonnichsen, D. Atamanchuk, A. Hendricks, S. Morgan, J. Smith, I. Grundke, E. Luy, and V. Sieben, ACS Sensors, 2023, vol. 8(1), pp. 344-352.
Click to read, DOI: 10.1021/acssensors.2c02343


2022

31. Two chemistries on a single lab-on-chip: Nitrate and orthophosphate sensing underwater with inlaid microfluidics. E. Luy, J. Smith, I. Grundke, C. Sonnichsen, A. Furlong, and V. Sieben, Frontiers in Sensors, 2022, vol. 3, pp. 1-14.
Click to read, DOI: 10.3389/fsens.2022.1080020

30. A submersible phosphate analyzer for marine environments based on inlaid microfluidics. S. Morgan, E. Luy, A. Furlong, and V. Sieben, Analytical Methods, 2022, vol. 14(1), pp. 22-33, Front Cover.
Click to read, DOI: 10.1039/d1ay01876k


2021

29. Simultaneous absorbance and fluorescence measurements using an inlaid microfluidic approach. J. Creelman, E. Luy, G. Beland, C. Sonnichsen, and V. Sieben, Sensors, 2021, vol. 21(18), pp. 6250.
Click to read, DOI: 10.3390/s21186250

28. Airy beams on incoherent background. M. Hajati, V. Sieben, and S. Ponomarenko, Optics Letters, 2021, vol. 46(16), pp. 3961-3964.
Click to read, DOI: 10.1364/OL.434168

27. An energy efficient thermally regulated optical spectroscopy cell for lab-on-chip devices: applied to nitrate detection. B. Murphy, E. Luy, K. Panzica, G. Johnson, and V. Sieben, Micromachines, 2021, vol. 12(8), pp. 861.
Click to read, DOI: 10.3390/mi12080861


2020

26. Inlaid microfluidic optics: absorbance cells in clear devices applied to nitrite and phosphate detection. E. Luy, S. Morgan, J. Creelman, B. Murphy, and V. Sieben, Journal of Micromechanics and Microengineering, 2020, vol. 30(9), 095001, pp. 1-15.
Click to read, DOI: 10.1088/1361-6439/ab9202

25. Evaluation of crude oil asphaltene deposition inhibitors by surface plasmon resonance. R. Khosravi, C. Rodriguez, F. Mostowfi, and V. Sieben, FUEL, 2020, vol. 273, pp. 117787.
Click to read, DOI: 10.1016/j.fuel.2020.117787


2019

24. A magnetically tunable check valve applied to a lab-on-chip nitrite sensor. S. Morgan, A. Hendricks, M. Seto, and V. Sieben, Sensors, 2019, vol. 19(21), pp. 4619.
Click to read, DOI: 10.3390/s19214619


2018

23. An RF-powered wireless temperature sensor for harsh environment monitoring with non-intermittent operation. P. Saffari, A. Basaligheh, V. Sieben, and K. Moez, IEEE Transactions on Circuits and Systems I, 2018, vol. 65(5), pp. 1529-1542.
Click to read, DOI: 10.1109/TCSI.2017.2758327


2017

22. Measuring asphaltene deposition onset from crude oils using surface plasmon resonance. V. Sieben, S. Molla, F. Mostowfi, C. Floquet, A. Speck, and K. Chau, Energy and Fuels, 2017, vol. 31(6), pp. 5891-5901.
Click to read, DOI: 10.1021/acs.energyfuels.7b00363

21. Optical measurement of saturates, aromatics, resins, and asphaltenes in crude oil. V. Sieben, A. Stickel, C. Maife, J. Rowbotham, A. Memon, N. Hamed, J. Ratulowski, and F. Mostowfi, Energy and Fuels, 2017, vol. 31(4), pp. 3684-3697.
Click to read, DOI: 10.1021/acs.energyfuels.6b03274

20. Rapid determination of boron in oilfield water using a microfluidic instrument. C. Floquet, T. Lindvig, V. Sieben, B. MacKay, and F. Mostowfi, Analytical Methods, 2017, vol. 9, pp. 1948-1955.
Click to read, DOI: 10.1039/C6AY03319A


2016

19. Determination of boron concentration in oilfield water with a microfluidic ion exchange resin instrument. C. Floquet, V. Sieben, B. MacKay, and F. Mostowfi, Talanta, 2016, vol. 154, pp. 304-311.
Click to read, DOI: 10.1016/j.talanta.2016.03.074

18. Microfluidic approach for evaluating the solubility of crude oil asphaltenes. V. Sieben, A. Tharanivasan, S. Andersen, and F. Mostowfi, Energy and Fuels, 2016, vol. 30, pp.1933-1946.
Click to read, DOI: 10.1021/acs.energyfuels.5b02216

17. Determination of boron in produced water using the carminic acid assay. C. Floquet, V. Sieben, B. MacKay, and F. Mostowfi, Talanta, 2016, vol. 150, pp. 240-252.
Click to read, DOI: 10.1016/j.talanta.2015.12.010


2005-2015

16. Asphaltenes yield curve measurements on a microfluidic platform. V. Sieben, A. Tharanivasan, F. Mostowfi, and J. Ratulowski, Lab on a Chip, 2015, vol. 15, pp. 4062-4074.
Click to read, DOI: 10.1039/C5LC00547G

15. Novel measurement of asphaltene content in oil using microfluidic technology. V. Sieben, A. Kharrat, and F. Mostowfi, SPE Annual Technical Conference and Exhibition, 2013, manuscript SPE-166394-MS, pp. 1-8.
Click to read, DOI: 10.2118/166394-MS

14. A high performance microfluidic analyser for phosphate measurements in marine waters using the vanadomolybdate method. F. Legiret, V. Sieben, E. Woodward, S. Abi Kaed Bey, M. Mowlem, D. Connelly, and E. Achterberg, Talanta, 2013, vol. 116, pp. 382-387.
Click to read, DOI: 10.1016/j.talanta.2013.05.004

13. Measurement of Asphaltenes Using Optical Spectroscopy on a Microfluidic Platform. M. Schneider, V. Sieben, A. Kharrat, and F. Mostowfi, Analytical Chemistry, 2013, vol. 85(10), pp. 5153-5160.
Click to read, DOI: 10.1021/ac400495x

12. Lab-on-Chip Measurement of Nitrate and Nitrite for In Situ Analysis of Natural Waters. A. Beaton, C. Cardwell, R. Thomas, V. Sieben, F. Legiret, E. Waugh, P. Statham, M. Mowlem, and H. Morgan, Environmental Science and Technology, 2012, vol. 46(17), pp. 9548-9556.
Click to read, DOI: 10.1021/es300419u

11. Evanescent Photosynthesis: Exciting cyanobacteria in a surface-confined light field. M. Ooms, V. Sieben, S. Pierobon, E. Jung, M. Kalontarov, D. Erickson, and D. Sinton, Physical Chemistry Chemical Physics, 2012, vol. 14, pp. 4817-4823.
Click to read, DOI: 10.1039/C2CP40271H

10. Temporal Optimization of Microfluidic Colorimetric Sensors by Use of Multiplexed Stop-Flow Architecture. I. Ogilvie, V. Sieben, M. Mowlem, and H. Morgan, Analytical Chemistry, 2011, vol. 83(12), pp. 4814-4821.
Click to read, DOI: 10.1021/ac200463y

9. Chemically resistant microfluidic valves from Viton® membranes bonded to COC and PMMA. I. Ogilvie, V. Sieben, B. Cortese, M. Mowlem, and H. Morgan, Lab on a Chip, 2011, vol. 11(14), pp. 2455-2459.
Click to read, DOI: 10.1039/C1LC20069K

8. An automated microfluidic colorimetric sensor applied in situ to determine nitrite concentration. A. Beaton, V. Sieben, C. Floquet, E. Waugh, S. Abi Kaed Bey, I. Ogilvie, M. Mowlem, and H. Morgan, Sensors and Actuators B: Chemical, 2011, vol. 156(2), pp. 1009-1014.
Click to read, DOI: 10.1016/j.snb.2011.02.042

7. Nanomolar detection with high sensitivity microfluidic absorption cells manufactured in tinted PMMA for chemical analysis. C. Floquet, V. Sieben, A. Milani, E. Joly, I. Ogilvie, H. Morgan, and M. Mowlem, Talanta, 2011, vol. 84(1), pp. 235-239.
Click to read, DOI: 10.1016/j.talanta.2010.12.026

6. Reduction of surface roughness for optical quality microfluidic devices in PMMA and COC. I. Ogilvie, V. Sieben, C. Floquet, R. Zmijan, M. Mowlem, and H. Morgan, Journal of Micromechanics and Microengineering, 2010, vol. 20(6), 065016, pp. 1-8.
Click to read, DOI: 10.1088/0960-1317/20/6/065016

5. Microfluidic colourimetric chemical analysis system: application to nitrite detection. V. Sieben, C. Floquet, I. Ogilvie, M. Mowlem, and H. Morgan, Analytical Methods, 2010, vol. 2(5), pp. 484-491.
Click to read, DOI: 10.1039/c002672g

4. An integrated microfluidic chip for chromosome enumeration using fluorescence in situ hybridization. V. Sieben, C. Debes-Marun, L. Pilarski, and C. Backhouse, Lab on a Chip - Special issue on point-of-care-diagnostics, 2008, vol. 8(12), pp. 2151-2156.
Click to read, DOI: 10.1039/b812443d

3. FISH and chips: chromosomal analysis on microfluidic platforms. V. Sieben, C. Debes-Marun, P. Pilarski, G. Kaigala, L. Pilarski, and C. Backhouse, IET Nanobiotechnology, 2007, vol. 1(3), pp. 27-35.
Click to read, DOI: 10.1049/iet-nbt:20060021

2. Small volume PCR in PDMS biochips with integrated fluid control and vapour barrier. A. Prakash, S. Adamia, V. Sieben, P. Pilarski, L. Pilarski, and C. Backhouse, Sensors and Actuators B: Chemical, 2006, vol. 113(1), pp. 398-409.
Click to read, DOI: 10.1016/j.snb.2005.03.049

1. Rapid on-chip postcolumn labeling and high-resolution separations of DNA. V. Sieben and C. Backhouse, Electrophoresis, 2005, vol. 26(24), pp. 4729-4742.
Click to read, DOI: 10.1002/elps.200500459


Patents, Books, Standards

Patents Granted

14. US 11,644,408 B2: Optical cell and methods of manufacturing an optical cell.
Link

13. US 11,231,356 B2: Optical cell and methods of manufacturing an optical cell.
Link

12. US 11,035,839 B2: Automated method and apparatus for measuring saturate, aromatic, resin, and asphaltene fractions using microfluidics and spectroscopy.
Link

11. US 10,850,277 B2: Centrifugal platform and device for rapid analysis of oilfield fluids.
Link

10. US 10,677,775 B2: Microfluidic method for detection of fines, waxes, and asphaltenes in oil.
Link

9. US 10,379,100 B2: Method of predicting the concentration of asphaltenes using a first precipitant and correlation back to an asphaltene concentration measurement using a second precipitant.
Link

8. US 10,359,412 B2: Systems and methods for detection of mercury in hydrocarbon-containing fluids using optical analysis of slug flow.
Link

7. US 10,281,397 B2: Optical sensors using surface plasmon resonance to determine at least one property relating to phase change of a hydrocarbon-based analyte.
Link

6. US 10,254,216 B2: Systems, methods and apparatus for analysis of reservoir fluids using surface plasmon resonance
Link

5. US 10,065,187 B2: Centrifugal platform and device for rapid analysis of oilfield fluids.
Link

4. US 10,031,122 B2: Automated method and apparatus to characterize solubility of asphaltenes of a hydrocarbon fluid sample utilizing microfluidics.
Link

3. US 9,689,858 B2: Method and apparatus for measuring asphaltene onset conditions and yields of crude oils.
Link

2. US 9,068,962 B2: Method and apparatus for determining asphaltene yield and flocculation point of crude oil.
Link

1. US 9,025,152 B2: Microfluidic absorption cell.
Link

Patent Applications

5. US App 17/468,986: Microfluidic chip, systems, and methods for capturing of environmental DNA.
Link

4. US App 17/603,356: Magnetically tunable microfluidic check valve, microfluidic pumps, syringe pump, and methods of manufacturing thereof.
Link

3. US 20170082551 A1: Mobile microfluidic determination of analytes.
Link

2. US 20120288672 A1: Solvent vapor bonding and surface treatment methods.
Link

1. US 20120082978 A1: Cell analysis on microfluidic chips.
Link

Books and Chapters

Determination of Asphaltenes Using Microfluidics, Analytical Methods in Petroleum Upstream Applications, F. Mostowfi and V. Sieben. Edited by C. Ovalles and C. Rechsteiner Jr., February 26, 2015. Taylor & Francis, 2014. Pages 337. ISBN 9781482230864.
Link

Standards

ASTM D7996: Standard Test Method for Measuring Visible Spectrum of Asphaltenes in Heavy Fuel Oils and Crude Oils by Spectroscopy in a Microfluidic Platform.
Link